Secrecy Codes for Wireless Control Systems

Anastasios Tsiamis, Konstantinos Gatsis, George J. Pappas

University of Pennsylvania

July 13, 2018
Secrecy Issues in the Internet of Things

- Interconnected sensors and actuators.
- Communication over wireless networks.

The wireless medium may be compromised.

- Broadcast nature.
- Eavesdroppers may intercept sensitive data about the physical system.
Eavesdropping attacks in Dynamical Systems

Dynamical System → Sensor → Channel → User

Eavesdropper

Goal
- Protect dynamical state information, e.g. position, velocity.
Eavesdropping attacks in Dynamical Systems

Goal
- Protect dynamical state information, e.g. position, velocity.
- Design secrecy codes.
Eavesdropping attacks in Dynamical Systems

Goal
- Protect dynamical state information, e.g. position, velocity.
- Design secrecy codes.

Challenges
- Tradeoff between security and code complexity.
Goal
▶ Protect dynamical state information, e.g. position, velocity.
▶ Design secrecy codes.

Challenges
▶ Tradeoff between security and code complexity.

Approach
▶ Can we exploit model knowledge/physics for secrecy?
Previous work

Encryption

- Adversary should have bounded computational capabilities.
- Communication/computation overheads.

Our approach: State-Secrecy Codes

- Exploit the system dynamics.
- New tradeoff between code complexity and security.
- Simple and fast.
- Strong security guarantees about the current state.

Related work

- Codes for several types of linear systems
 A. Tsiamis et al. CDC 2017, ACC 2018, CDC 2018
- Non-coding approach
 A. S. Leong et al. IFAC 2017, CDC 2017
 A. Tsiamis et al. IFAC 2017
Previous work

Encryption
- Adversary should have bounded computational capabilities.
- Communication/computation overheads.

Physical layer security
- Provable guarantees.
- Requires eavesdropper’s channel model.
Previous work

Encryption

- Adversary should have bounded computational capabilities.
- Communication/computation overheads.

Physical layer security

- Provable guarantees.
- Requires eavesdropper’s channel model.

Our approach: State-Secrecy Codes

- Exploit the system dynamics.
- New tradeoff between code complexity and security.
- Simple and fast.
- Strong security guarantees about the current state.
Previous work

Our approach: State-Secrecy Codes

- Exploit the system dynamics.
- New tradeoff between code complexity and security.
- Simple and fast.
- Strong security guarantees about the current state.

Related work

- Codes for several types of linear systems
 A. Tsiamis et al. CDC 2017, ACC 2018, CDC 2018
- Non-coding approach
 A. S. Leong et al. IFAC 2017, CDC 2017
 A. Tsiamis et al. IFAC 2017
Model

System x_k → Sensor & Encoder → ACK → User $\hat{x}_{u,k}$

- z_k encoded version of state x_k
- $\gamma_{u,k}$
- $\gamma_{e,k}$

Eavesdropper $\hat{x}_{e,k}$

Linear System

- state x_k; e.g. position and velocity at time k

$$x_{k+1} = Ax_k + w_{k+1}, \quad w_k : \text{Gaussian process noise}$$
Model

Linear System

- state x_k; e.g. position and velocity at time k

 $$x_{k+1} = Ax_k + w_{k+1}, \quad w_k : \text{Gaussian process noise}$$

Sensor and encoder

- z_k encoded version of state x_k.
Model

Channel

- Packet drop channels:
 - Message either received intact or dropped.
 - $\gamma_{u,k} = 1$: message z_k received.
 - $\gamma_{u,k} = 0$: message z_k dropped.
 - Acknowledgment signals available.
Decoders: Minimum Mean Square Error Estimators

- Information sets:

\[\mathcal{I}_{u,k} = \{ \text{Received messages } z_k \} \]
\[\mathcal{I}_{e,k} = \{ \text{Intercepted messages } z_k, \text{User’s outcomes } \gamma_{u,k} \} \]
Decoders: Minimum Mean Square Error Estimators

- Information sets:
 \[\mathcal{I}_{u,k} = \{ \text{Received messages } z_k \} \]
 \[\mathcal{I}_{e,k} = \{ \text{Intercepted messages } z_k, \text{User's outcomes } \gamma_{u,k} \} \]

- Estimation:
 \[\hat{x}_{u,k} \text{ minimizes } \mathbb{E}(\| x_k - \hat{x}_{u,k} \|^2 | \mathcal{I}_{u,k}) \]
 \[P_{u,k} \text{ user mmse covariance given } \mathcal{I}_{u,k} \]
Problem: Secrecy

<table>
<thead>
<tr>
<th>Secrecy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find a coding scheme such that:</td>
</tr>
<tr>
<td>▶ Eavesdropper’s minimum mean square error (mmse) for the current state is maximum asymptotically.</td>
</tr>
<tr>
<td>▶ User’s mmse is optimal.</td>
</tr>
</tbody>
</table>

Assumptions

- Public A.
- Passive eavesdropper.
- Eavesdropper knows model, coding scheme, acknowledgments.
State-Secrecy Code

Coding Scheme

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

\(t_k \): the most recent message received at the user

- Matrix \(L \) depends on the dynamical system’s model.

- Choice of \(L \): makes \(z_k \) less correlated to \(x_k \) for the eavesdropper.

- ACKs: user and sensor agree on \(t_k \).

- Fast and simple.

- Can be used along with encryption.
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

Encoder	User	Eavesdropper
\(x_0 \) | |

User decodes by adding.
Eavesdropper decodes initially.
Eavesdropper cannot decode for \(k > 2 \).
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✔️</td>
<td>(x_0)</td>
</tr>
</tbody>
</table>
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

Encoder

User

Eavesdropper

\[x_0 \]

✓

\[x_0 \]

\[x_0 \]
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✔</td>
<td>(x_0)</td>
</tr>
<tr>
<td>(x_1 - Lx_0)</td>
<td>✗</td>
<td>—</td>
</tr>
</tbody>
</table>
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✔️</td>
<td>x_0</td>
</tr>
<tr>
<td>(x_1 - Lx_0)</td>
<td>✗</td>
<td>-</td>
</tr>
<tr>
<td>(x_2 - L^2x_0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User decodes by adding. Eavesdropper decodes initially. Eavesdropper cannot decode for \(k > 2 \).
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>(x_1 - Lx_0)</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>(x_2 - L^2x_0)</td>
<td>✔️</td>
<td>(x_2 - L^2x_0)</td>
</tr>
</tbody>
</table>
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✓</td>
<td>(x_0)</td>
</tr>
<tr>
<td>(x_1 - Lx_0)</td>
<td>✗</td>
<td>-</td>
</tr>
<tr>
<td>(x_2 - L^2x_0)</td>
<td>✓</td>
<td>(x_2 - L^2x_0)</td>
</tr>
<tr>
<td>(x_3 - Lx_2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(x_1 - Lx_0)</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>(x_2 - L^2x_0)</td>
<td>✓</td>
<td>(x_2 - L^2x_0)</td>
</tr>
<tr>
<td>(x_3 - Lx_2)</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✓</td>
<td>(x_0)</td>
</tr>
<tr>
<td>(x_1 - Lx_0)</td>
<td>✗</td>
<td>-</td>
</tr>
<tr>
<td>(x_2 - L^2x_0)</td>
<td>✓</td>
<td>(x_2 - L^2x_0)</td>
</tr>
<tr>
<td>(x_3 - Lx_2)</td>
<td>✗</td>
<td>-</td>
</tr>
<tr>
<td>(x_4 - L^2x_2)</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

User decodes by adding.
Eavesdropper decodes initially.
Eavesdropper cannot decode for \(k > 2 \).
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>(x_0)</td>
<td></td>
</tr>
<tr>
<td>(x_1 - Lx_0)</td>
<td>(\times)</td>
<td></td>
</tr>
<tr>
<td>(x_2 - L^2x_0)</td>
<td>(\checkmark)</td>
<td>(x_2 - L^2x_0)</td>
</tr>
<tr>
<td>(x_3 - Lx_2)</td>
<td>(\times)</td>
<td></td>
</tr>
<tr>
<td>(x_4 - L^2x_2)</td>
<td>(\checkmark)</td>
<td>(x_4 - L^2x_2)</td>
</tr>
</tbody>
</table>
Example

Code

\[
z_k = x_k - L^{k-t_k} x_{t_k}
\]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(x_1 - Lx_0)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>(x_2 - L^2x_0)</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>(x_3 - Lx_2)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>(x_4 - L^2x_2)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

User decodes by adding.

Eavesdropper decodes initially.

Eavesdropper cannot decode for \(k > 2\).
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(x_1 - L x_0)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>(x_2 - L^2 x_0)</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>(x_3 - L x_2)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>(x_4 - L^2 x_2)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- User decodes by adding.

Example

Encoder _User_ _Eavesdropper_

\(x_0 \) ✓ x_0 ✓ x_0

\(x_1 - L x_0 \) ✗ — ✓ x_1 - L x_0

\(x_2 - L^2 x_0 \) ✓ x_2 - L^2 x_0 ✗ —

\(x_3 - L x_2 \) ✗ — ✓ x_3 - L x_2

\(x_4 - L^2 x_2 \) ✓ x_4 - L^2 x_2 ✓ x_4 - L^2 x_2

▶ User decodes by adding.
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(x_1 - Lx_0)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>(x_2 - L^2 x_0)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(x_3 - Lx_2)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>(x_4 - L^2 x_2)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- User decodes by adding.
- Eavesdropper decodes initially.
- Eavesdropper cannot decode for \(k > 2\).
Example

Code

$$z_k = x_k - L^{k-t_k} x_{t_k}$$

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>$x_1 - Lx_0$</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>$x_2 - L^2x_0$</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>$x_3 - Lx_2$</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>$x_4 - L^2x_2$</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

- User decodes by adding.
- Eavesdropper decodes initially.
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(x_0 - Lx_0)</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>(x_2 - L^2x_0)</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>(x_2 - Lx_2)</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>(x_4 - L^2x_2)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- User decodes by adding.
- Eavesdropper decodes initially.
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(x_1 - Lx_0)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>(x_2 - L^2 x_0)</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>(x_3 - Lx_2)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>(x_4 - L^2 x_2)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- User decodes by adding.
- Eavesdropper decodes initially.
- Eavesdropper cannot decode for \(k > 2 \).
Example

Code

\[z_k = x_k - L^{k-t_k} x_{t_k} \]

<table>
<thead>
<tr>
<th>Encoder</th>
<th>User</th>
<th>Eavesdropper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(x_1 - Lx_0)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>(x_2 - L^2x_0)</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>(x_3 - Lx_2)</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>(x_4 - L^2x_2)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Critical event

When the user receives while the eavesdropper misses:

\[\gamma_{u,k} = 1, \gamma_{e,k} = 0, \text{ for some } k \]

Damages the eavesdropper (here for \(k = 2 \)).
Theorem 1: Secrecy

If the critical event occurs at time k_0 secrecy is achieved:

- **Eavesdropper’s** mmse is asymptotically maximum:

 $$P_{e,k} \rightarrow \text{maximum value}$$

- **User’s** mmse remains optimal:

 $$P_{u,k} = 0, \text{ when user receives. } (\gamma_{u,k} = 1)$$

- One occurrence of the critical event is sufficient.
 (user receives and eavesdropper fails to intercept at some time k.)

- Condition holds for most packet dropping channels.
Simulation scenario

- Linearized dynamics, planar quadrotor
- Hovers around target point \((0, 0, 0)\)
- State is position and velocity
Simulation scenario

- Height estimation
Simulation scenario

- Height estimation
- Critical event occurs at time $k = 47$
Simulation scenario

- Height estimation

- Critical event occurs at time $k = 47$

- Eavesdropper gets confused about the state; trivial estimate $x_e = 0$
Simulation scenario

- Height estimation
- Critical event occurs at time $k = 47$
- Eavesdropper gets confused about the state; trivial estimate $x_e = 0$
- User’s estimation remains accurate
Conclusion

Summary

► We can exploit the dynamical system model/physics for secrecy.
► Codes specialized for dynamical systems.
► Simple and fast, strong guarantees for the current state.
► Secrecy guarantees for several types of linear systems.
Conclusion

Summary

▶ We can exploit the dynamical system model/physics for secrecy.
▶ Codes specialized for dynamical systems.
▶ Simple and fast, strong guarantees for the current state.
▶ Secrecy guarantees for several types of linear systems.

Future Work

▶ How to defend against active eavesdroppers?
▶ How can we combine codes with encryption efficiently?
▶ How can we apply the codes in closed-loop control systems?
▶ How can we protect past states?
Thank you!