NSF/Intel PI Meeting — July 13, 2018

Diagnosing Distributed CPS
? with Timing Provenance

Yang Linh Thi Xuan Andreas
Wu Phan Haeberlen

@ Problem: Timing faults

= Many CPS are time dependent
= The “right thing” must happen at the “right time”!

= What if this goes wrong?
= Reasons: attack, bug, misconfiguration, ...

= Goal: A powerful diagnostic capability

= Can we find the root cause of both functional and timing
issues, such as low throughput, oscillations, high latencies, ...?

Industrial 77T TEERTTRR R DS ATEES - Consumer
nnnnnnnnnnnnnnnnnnnnnn

Internet
Z -— Appliances
@ G) i
N Home Monitori
&) il oz (8
MMMMMMMM
uuuuuuuu
/7
~
&J ¥ ". O

««««««««««««««

@2018 Linh T. X. Phan — Timing Provenance

@ Challenge

Misbehaving Storage RPCs ‘

| .

Root cause!

»

L

==
-

=

Storage
Backend (B)

Victim Storage RPC

&

4

= State of the art

Why is the request taking
so long to complete?

Computing Request

Computing
Service (C)

Maintenance
Service (M)

= Cannot reason about timing

@2018 Linh T. X. Phan — Timing Provenance

i (Q) How was the computing response generated? |

|_V_‘1rl Computing Rsp

generated at C at 95s

Storage RPC Rsp
received by C at 93s

Storage Block

was ... during [0s,93s)

Storage RPC Rsp

sent by B at 93s

X
v2 Computing Req
received by C at 80s

Storage RPC Req
received by B at 81s

X

Storage RPC Req
sent by C at 871s

Bottleneck!
Root cause?

Storage Type
was remote during [0s,«)

Y

I (time) >
[Computing Request spanid: 1, parent id: none
10 v 2 16
A A
: l Storage RPC span id: 2, parent id: 1 :
Start t1 *g t4——t51 End
\

A A

ClientServer Bottleneck! Start Server Client
Send Recv Root cause? Job Send Recv

Distributed tracing: explain what was computed when, but not why
Network provenance: only reason about functional causality

@ Approach: Timing provenance

Root cause

¥ Misbehaving Storage RPCs captured!

| .

Queuing delay! =

<A =

Storage " Victim Storage RPC Maintenance
Backend (B) Service (M)
Why is the request taking
so long to complete? Computi
- puting
%y Y Computing Request Service (C)
(-]

= A generalization of provenance that tracks both

functional causality and| temporal causality |

= i.e., causes that affect the timing of the observed symptom
= Mmay involve requests that are functionally independent

= Result: Can explain both the ‘what’ and the ‘when’

@2018 Linh T. X. Phan — Timing Provenance

@ How to capture temporal causality?

= Intuition: Represent ordering relationship between exec.

= We need to know not just what the system did, but also in what order
(queuing and scheduling semantics)

= Extend critical-path analysis in a novel way for the

analysis
&
ABCD
<« <
Degueue I I I I Engueue K
Request D can only be dequeued after Timing provenance of D

C is dequeued and finished processing must include C

@2018 Linh T. X. Phan — Timing Provenance

Insight #1: Sequencing edges

= Add a sequencing edge from execution X to execution Y
if X immediately precedes Y in the queue

Symptom

’

' 4
Slow Compute

Respons

t=100, @B-C, BillingRsp
Seq: 1, Enq: 98, Acq: 98, Deq: 100

t=113, @S-C, StorageRsp
Seq: 1, Eng: 111, Acq: 111, Deq: 113

| t=97, @C, ComputeI{p, | |

t=98, @B, BillingRsp,
Seq: 6, Enq: 89, Acq: 92, Deq: 97

Seq: 2, Enq: 93, Acq: 93, Deq: 98

t=111, @é, StorageRsp
Seq: 3, Enqg: 91, Acq: 108, Deq: 111

i

t=92, @C, NetworkRsp t=93, @C-B, BillingReq
Seq: 5, Eng: 87, Acq: 91, Deq: 92

Seq: 1, Eng: 91, Acq: 91, Deq: 93

t=91, @C-S, StorageReq D
Seq: 1, Eng: 90, Acg: 90, Deq: 91

t=91, @C, BillingReq
Seq: 4, Enq: 87, Acq: 90, Deq: 91

Compute
RPC

t=89, @C, éomputeReq
Seq: 2, Enq: 87, Acq: 88, Deq: 89

t=90, @C, StorageReq |

| _; Seq: 3, Enq: 87, Acq: 89, Deq: 90

Storage
RPC

Network
RPC

t=88\,@C, ﬁetworkReq
Seq: 1, Enq: 87, Acq: 87, Deq: 88

Compute
Request

@2018 Linh T. X. Phan — Timing Provenance

t=108, @S, StorageRsp

Seq: 2, Enq: 86, Acq: 105, Deq: 108 C

t=88, @M-S, StorageReq

=105, @S, StorageRsp Seq: 2, Enq: 86, Acq: 86, Deq: 88

t=102, @S, StorageRsp

Seq: 0, Eng: 84, Acq: 99, Deq: 102 A

Seq: 1, Enqg: 86, Acq: 102, Deq: 105 B

t=84, @C-S, StorageReq
Seq: 0, Eng: 83, Acq: 83, Deq: 84

t=83, @M, StorageReq
Seq: 0, Eng: 82, Acq: 82, Deq: 83

t=82, @M, MaintainReq

t=86, @M, StorageReq
Seq: 2, Enq: 85, Acq: 85, Deq: 86

t=86, @M-S, StorageReq
Seq: 1, Enq: 84, Acq: 84, Deq: 86

t=85, @M, MaintainReq

t=84, @M, StorageReq
Seq: 1, Enq: 83, Acq: 83, Deq: 84

t=83, @M, MaintainReq

) Root cause!
Maintenance @ ___.---

Jobs “ 6

—
@ Challenge: Usability

= Not all executions are equally important

= How to isolate executions that contribute substantially to
the overall delay?

Slow Compute

t=100, @B-C, BillingRsp t=113, @S-C, StorageRsp
Seq: 1, Enq: 98, Acq: 98, Deq: 100 Seq: 1, Enqg: 111, Acq: 111, Deq: 113
t=97, @C, ComputeRsp, t=98, @B, BillingRsp,
Seq: 6, Enq: 89, Acq: 92, Deq: 97 Seq: 2, Enq: 93, Acq: 93, Deq: 98 t=111, @S, StorageRsp
Seq: 3, Enq: 91, Acq: 108, Deq: 111
— - t=108, @S, StorageRsp
t=92, @C, NetworkRsp t=93, @C-B, BillingReq Seq: 2, Eng: 86, Acq: 105, Deg: 108
Seq: 5, Enq: 87, Acq: 91, Deq: 92 Seq: 1, Eng: 91, Acq: 91, Deq: 93 =91, @C-S, StorageReq
Seq: 1, Enqg: 90, Acq: 90, Deq: 91
\ =91, @O, BillngRea t=88, @M-S, StorageReq
2 g Seq: 2, Enq: 86, Acq: 86, Deq: 88
Seq: 4, Eng: 87, Acq: 90, Deg: 91 t=105, @S, StorageRsp q 9: 86, Acq q
Compute \ Seq: 1, Enqg: 86, Acq: 102, Deq: 105
R PC = t=86, @M, StorageReq
o ;—?g; @57, SAtorelzgagRg:]e ‘%0 t=102, @S, StorageRsp 1=86, @\-S, StorageReq Seq: 2, Enq: 85, Acq: 85, Deq: 86
t=89, @C, ComputeReq b s e Aaon e Lo, Seq: 0, Enq: 84, Acq: 99, Deq: 102 Seq: 1, Eng: 84, Acq: 84, Deq: 86
Seq: 2, Enq: 87, Acq: 88, Deq: 89 \
g t=84, @C-S, StorageReq -
X g 5 . t=84, @M, StorageReq
RPC RPC SI5t 0 (ETe () 5T 8 DIER e Seq: 1, Enq: 83, Acq: 83, Deq: 84
t=88, @C, NetworkReq
Seq: 1, Enq: 87, Acq: 87, Deq: 88 t=83, @M, StorageReq
Seq: 0, Eng: 82, Acq: 82, Deq: 83
@2018 Linh T. X. Phan — Timing Provenance q Jobs 7

—
@ Insight #2: Delay annotations

= Annotate vertexes with the delays that they contribute

+90.009s

Slow Compute
Respons

+90s

t=100, @B-C, BillingRsp t=113, @S-C, StorageRsp
Seq: 1, Enq: 98, Acq: 98, Deq: 100 Seq: 1, Enqg: 111, Acq: 111, Deq: 113

t=97, @C, ComputeRsp, t=98, @B, BillingRsp,

Seq: 6, Enq: 89, Acq: 92, Deq: 97 Seq: 2, Enq: 93, Acq: 93, Deq: 98 t=111, @S, StorageRsp
+0 00 S/ Seq: 3, Eng: 91, Acg: 108, Deq: 111 4
L}
— - t=108, @S, StorageRsp
t=92, @C, NetworkRsp t=93, @C-B, BillingReq Seq: 2, Eng: 86, Acq: 105, Deg: 108
Seq: 5, Enq: 87, Acq: 91, Deq: 92 Seq: 1, Eng: 91, Acq: 91, Deq: 93 =91, @C-S, StorageReq
Seq: 1, Enqg: 90, Acq: 90, Deq: 91
\ t=91, @C, BillingRe: =88, @M-S, StorageReq
Seq: 4, Eng: 87, Acg: 90, Deg: 91 t=105, @S, StorageRsp S35 EEELL e iy Daa B
Compute \ Seq: 1, Enqg: 86, Acq: 102, Deq: 105
R PC = t=86, @M, StorageReq
o ;—?g; @57, SAtorelzgagRg:]e ‘%0 t=102, @S, StorageRsp 1=86, @\-S, StorageReq Seq: 2, Enq: 85, Acq: 85, Deq: 86
t=89, @C, ComputeReq b s e Aaon e Lo, Seq: 0, Enq: 84, Acq: 99, Deq: 102 Seq: 1, Eng: 84, Acq: 84, Deq: 86
Seq: 2, Enq: 87, Acq: 88, Deq: 89 \

t=84, @C-S, StorageReq

. : . . t=84, @M, StorageReq
RPC SI5t 0 (ETe () 5T 8 DIER e Seq: 1, Enq: 83, Acq: 83, Deq: 84

RPC

t=88, @C, NetworkReq
Seq: 1, Enq: 87, Acq: 87, Deq: 88 t=83, @M, StorageReq
Seq: 0, Eng: 82, Acq: 82, Deq: 83

Compute Maintenance
Request Jobs 8

@2018 Linh T. X. Phan — Timing Provenance

Slow Compute

Insight #2: Delay annotations

= Annotate vertexes with the delays that they contribute

= Goal: Delay annotations should correspond to “potential
speedup”

Respons

t=100, @B-C, BillingRsp
Seq: 1, Eng: 98, Acq: 98, Deq: 100

HIBHIEs

P90

t=113, @S-C, StorageRsp
Seq: 1, Eng: 111, Acq: 111, Deq: 113

t=97, @C, ComputeRsp,
Seq: 6, Enq: 89, Acq: 92, Deq: 97

t=98, @B, BillingRsp,
Seq: 2, Eng: 93, Acq: 93, Deq: 98

Network
RPC

@2018 Linh T. X. Phan — Timing Provenance

t=92, @C, NetworkRsp
Seq: 5, Enq: 87, Acq: 91, Deq: 92

t=93, @C-B, BillingReq
Seq: 1, Eng: 91, Acq: 91, Deq: 93

'\

Seq: 4, Enq: 87,

t=91, @C, BillingReq
Acq: 90, Deq: 91

Compute
RPC

t=89, @C, ComputeReq
Seq: 2, Enq: 87, Acq: 88, Deq: 89

t=88, @C, NetworkReq
Seq: 1, Enq: 87, Acq: 87, Deq: 88

N

Seq: 3, Enq: 87, Acq: 89, Deq: 90

t=90, @C, StorageReq

Storage
RPC

Compute
Request

t=111, @S, StorageRsp
Seq: 3, Enq: 91, Acq: 108, Deq: 111

t=91, @C-S, StorageReq
Seq: 1, Enqg: 90, Acq: 90, Deq: 91

) t=105, @S, StorageRsp
S

t=102, @S, StorageRsp
Seq: 0, Eng: 84, Acq: 99, Deq: 102

\

t=108, @S, StorageRsp
Seq: 2, Eng: 86, Acq: 105, Deq: 108

/

eq: 1, Enq: 86, Acq: 102, Deq: 105

t=84, @C-S, StorageReq
Seq: 0, Enqg: 83, Acq: 83, Deq: 84

t=83, @M, StorageReq
Seq: 0, Eng: 82, Acq: 82, Deq: 83

t=82, @M, MaintainReq

t=88, @M-S, StorageReq
Seq: 2, Enq: 86, Acq: 86, Deq: 88

t=86, @M-S, StorageReq
Seq: 1, Enq: 84, Acq: 84, Deq: 86

t=84, @M, StorageReq
Seq: 1, Enq: 83, Acq: 83, Deq: 84

t=83, @M, MaintainReq

Maintenance
Jobs

t=86, @M, StorageReq
Seq: 2, Enq: 85, Acq: 85, Deq: 86

t=85, @M, MaintainReq

@ Delay annotations: How to compute?

: Subdivide delay among the preconditions in the order in
which they are satisfied

o : Attribute the remaining delay to predecessors along the
sequencing edge

B@X :- C@X

[0s,85s]

E@Y :- C@X

C@X:-Z@X

DRV(A)
A

| DRV(B) RCV(+E) DRV(G) |
1]
f | '

NSy INSEY [0s,45]

[4s,65]

SND(+E) |[45,55]

DRV(E) [45,55]

RCV(+C)

I
0
@2018 Linh T. X. Phan — Timing Provenance

10

Insight #3: Provenance aggregation

= Aggregating subgraphs that are structurally similar
= Pruning zero-delay subgraphs

+90.009s

Slow Compute
Respons

+90s

t=100, @B-C, BillingRsp t=113, @S-C, StorageRsp
Seq: 1, Eng: 98, Acq: 98, Deq: 100 Seq: 1, Enq: 111, Acq: 111, Deq: 113

=97, @C, ComputeRsp, t=98, @B, BillingRsp,

Seq: 6, Eng: 89, Acq: 92, Deq: 97 Seq: 2, Eng: 93, Acq: 93, Deq: 98 t=111, @S, StorageRsp
+0 O 0 Seq: 3, Eng: 91, Acq: 108, Deq: 111 <F
. S
— t=108, @S, SifrageRsp
t=92, @C, NetworkRsp t=93, @C-B, BillingReq Seq: 2, Eng; 86, 105, Deq: 108
Seq: 5, Enqg: 87, Acq: 91, Deq: 92 Seq: 1, Eng: 91, Acq: 91, Deq: 93 =91, @C-S, StorageReq
Seq: 1, Eng: 90, Acq: 90, Deq: 91 I

t=91, @C, BillingReq

Seq: 4, Eng: 87, Acq: 90, Deq: 91

Compute v\

t=88, @M-S, StorageReq
eq: 2, Eng: 86, Acq: 86, Deq: 88

\

S, StorageRsp
: 86, Acq: 102, Deq: 105

R PC t=90, @C, StorageReq t=86, @M, StorageReq
v i) t=102, @S, StorageRsp =86, @M-S, St R Seq: 2, Enq: 85, Acq: 85, Deq: 86
t=89, @C, ComputeReq o Seq: 3, Enq: 87, Acq: 89, Deq: 90 A: 0, Enq: 84, Acq: 99, Deq: 102 Seq: 1, Er%: 84, Ac::r:?: Deec(]]: 86
Seq: 2, Enq: 87, Acq: 88, Deq: 89 /
Network Storage _ P —
t=84, @C-S, StorageReq 1=84, @M, StorageReq
R PC R PC Seq: 0, Eng: 83, Acq: 83, Deq: 84 Seq: 1, Er’1q: 83, Acq: 83, Deq: 84 W
1=88, @C, NetworkReq ’ | Main nce
Seq: 1, Enq: 87, Acq: 87, Deq: 88 t=83, @M, StorageReq \ t=83, @M, MaintainReq
Seq: 0, Eng: 82, Acq: 82, Deq: 83 J ObS
Compute MaMtenance
\ =82, @M, MaintainRe/
Request Jo

@2018 Linh T. X. Phan — Timing Provenance _/ 11

@ Putting everything together

Misbehaving Storage RPCs
L ~
— &
- >
- S3 S
Storage Victim Storage RPC I Maintenance
Backend (B) = S Service (M)
Why is the request taking
) so long to complete?
—_ Computing
Computing Request Service (C)

(Q) Why did the computing request take 14 seconds?

(B) 13 seconds spent on
queuing for other RPCs.

(A) 1 second spent on f
issuing the RPC. e

Queue Req
enqueued on B at 871s

Queue Rsp
dequeued on B at 87s,...,93s

Storage RPC Req 'i'
received by B at 81s Queue Req
L =~ enqueued on B at 75s,...,80s

Storage RPC Req e
sent by C at 81s

Computing Req
received by C at 80s

Root
cause!

= Detailed and weighted causal explanation of the delay

= Can find off-path root causes!

@2018 Linh T. X. Phan — Timing Provenance

12

@ Implementation, experimental setup

= Zeno, a debugger for timing-related faults

= Support for declarative + imperative systems

= Interfaces with NDlog and Zipkin
= Gathers data from switches w/P4

= Evaluation

= Evaluated with 9 realistic bugs from Google Cloud platform*
= Used networks that contained 8-700 nodes
= Results are promising

@2018 Linh T. X. Phan — Timing Provenance

13

@ Evaluation results

= Correctly identifies 11-28 relevant events

11-35 vertexes contributing delay

All steps Diagnosis in less than 10s
Original applied
3000 16 - . .
- 89% ~ Raw s 14 | Annotation+Aggregation
o 2500 | wirannotation (w>0) B @ Graph construction
o w/ annotation (w=0) ——— - 12 + St look
5 2000 w/ pruning (w>0) § 10 - Orage 00 L!ps | —
a W/ pruning (w=0) mm S 8 Replay/Post-processing
o 1500 L w/ aggregation (w>0) mm— K2) N
E w/ aggregation (w=0) === P 6
3 L £ 4
: 1000 E ol
= 500 | 0
0 ——— 35 R1 R2 R8 R4 Z1 Z2 Z3 Z4 M1
R1 R2 R3 R4 z1 72 - J time fi)
. . . rnaround tm [provenan 11
Size of the provenance for different example scenarios urnarot & for provenance queries
Produces readable explanations Low run-time overhead

Timing provenance is useful, compact and efficient!

@2018 Linh T. X. Phan — Timing Provenance 14

@ Summary: Timing Provenance

= A generalization of provenance to explicit represent
temporal causality

= The provenance tracks both functional and temporal causality
through sequencing edges

= Delay annotations + provenance aggregation improves usability
= Applied to RapidNet and Zipkin: Can find off-path root causes

= Benefit: Precise reasoning of both functional and
timing faults
= This will be useful for CPS diagnostics where time matters!

= On-going work
= Generalize to more complex scheduling policies

@2018 Linh T. X. Phan — Timing Provenance

15

