
T/KEY: SECOND-FACTOR AUTHENTICATION FROM SECURE HASH CHAINS

t

secret key

H
M

A
C

t

secret key

H
M

A
C≟

•

•

→

𝑑(𝑡)

𝔼 𝑐𝑜𝑠𝑡 = ෍
𝑖=0

𝑞−1

෍
𝑡=𝑐𝑖+1

𝑐𝑖+1

𝑐𝑖+1 − 𝑡 𝑑(𝑡) = 0

x tend t tinit

tattacktend

Hx H

salt

. . . H

tinit

ptinit

pattack

. . .

Hptinitsalt

H

tattack-1

Fonduer: Knowledge Base Construction fromRichly FormattedData

Sen Wu, Luke Hsiao, Xiao Cheng, Braden Hancock, Theodoros Rekatsinas*, Philip Levis, Christopher Ré
{senwu, lwhsiao, xiao, bradenjh, pal, chrismre}@cs.stanford.edu *thodrek@wisc.edu

Stanford University *University of Wisconsin-Madison

Introduction and Background
Fonduer is a machine-learning based knowledge base

construction (KBC) framework for richly formatted data,

where entity relations and attributes are conveyed via

structural, tabular, visual, and textual expressions.

 SMBT3904...MMBT3904

NPN Silicon Switching Transistors
• High DC current gain: 0.1 mA to 100 mA
• Low collector-emitter saturation voltage

Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCEO 40 V
Collector-base voltage VCBO 60
Emitter-base voltage VEBO 6
Collector current IC 200 mA
Total power dissipation
 TS ≤ 60°C
 TS ≤ 115°C

Ptot

S330S

S250S

mW

Junction temperature Tj 150 °C

Storage temperature Tstg -65 ... 150

Transistor Part Current

SMBT3904 200mA

MMBT3904 200mA

HasCollectorCurrent

Knowledge
Base

From	table

From	header

Transistor Datasheet
Font:	Arial;	Size:	12;	Style:	Bold

Aligned

Challenges of KBC from Richly Formatted Data:

• Prevalent Document-level Relations: For richly for-

matted data, many relations rely on information from

throughout the entire document to be extracted.

• Multimodality: Semantics are expressed as multiple

modalities—textual, structural, tabular, and visual.

• Data Variety: The same information can be pre-

sented in many di↵erent formats and styles, in ad-

dition to linguistic variations.

Knowledge Base Construction Using Fonduer
Input: Richly formatted documents (e.g. PDF/HTML/XML/etc.) ! Output: Structured knowledge base

Rul e?based LF based on vi sual i nf or mat i on
def y_axi s_al i gned(c) :
 r et ur n 1 i f c. par t . y == c. cur r ent . y el se 0

Rul e?based LF based on t abul ar cont ent
def has_cur r ent _i n_r ow(c) :
 i f ' cur r ent ' i n r ow_ngr ams (c. cur r ent) :
 r et ur n 1
 el se:
 r et ur n 0

Textual
Structural
Tabular
Visual

Multimodal
Data Model

Knowledge Base

Structured Data

Datasheets

Online Retail

Academic Literature

Richly Formatted Data

Matchers
Throttlers

LSTM extended
with multimodal

features

Weak
Supervision via

Labeling
Functions

Candidate
Generation

Multimodal
Featurization

Supervision &
Classification

Static

Use a di ct i onar y t o mat ch t r ansi st or par t s
def t r ansi st or _par t _mat cher (s) :
 r et ur n 1 i f s i n par t _di ct i onar y el se 0

Use RegEx t o ext r act number s [100, 999]
def max_cur r ent _mat cher (s) :
 r et ur n 1 i f r e. mat ch(' [1- 9] [0- 9] [0- 9] ' , s)
el se 0

Use sur r oundi ng cont ext t o t hr ot t l e candi dat es
def val ue_i n_header _t hr ot t l er (c) :
 i f ' Val ue' i n header _ngr ams (c. cur r ent) :
 r et ur n 1
 el se:
 r et ur n 0

Document

Section

TableText Figure

CaptionRow Column

Paragraph

Sentence

Cell

Iterative

User Study

LF Manual

Q
ua

lit
y

(F
1)

0.2

0.4

0.6

Time (min)
0 10 20 30

R
at

io

0

0.5

1.0

Txt. Str.Tab.Vis.

• Users relied 9⇥ more on non-textual signals than tex-

tual information alone to identify candidates and pro-

vide weak supervision.

• Leveraging multimodal supervision allowed users to

create knowledge bases more e↵ectively than tradi-

tional manual annotations alone.

Experimental Results
End-to-end Quality vs. Public Data

System Elec. Gen.
Knowledge Base Digi-Key GWAS Central GWAS Catalog
Entries in KB 376 3,008 4,023
Entries in Fonduer 447 6,420 6,420
Coverage 0.99 0.82 0.80
Accuracy 0.87 0.87 0.89
New Correct Entries 17 3,154 2,486
Increase in Correct Entries 1.05⇥ 1.87⇥ 1.42⇥

Ablation Studies

0.770.720.700.630.69

Q
ua

lit
y

(F
1)

0

0.5

1.0

Elec.

0.06

0.30

0.66
0.77

12.8x
2.6x

Q
ua

lit
y

(F
1)

0

0.5

1.0

Sentence Table Page Document

All
No Textual

No Structural
No Tabular

No Visual

Our Users

References

Blog: hazyresearch.github.io/snorkel/blog/fonduer

Paper: arxiv.org/abs/1703.05028

Code: github.com/HazyResearch/fonduer

See full version of paper online at
 https://arxiv.org/abs/1710.00458

Security Guarantees:
● Recognizes and reports attempts to tamper with data

● Leaks only query selectivity, table sizes (intermediate tables included), and query plans

● Optional padding mode hides all table sizes, leaking only query plans

Design Overview:
● Tables stored encrypted in unprotected memory, enclave only holds metadata

● Two oblivious storage methods: linear scans and oblivious indexes

● Supports most SQL operations: SELECT (MAX, MIN, AVG, SUM, COUNT), INSERT,
UPDATE, DELETE, GROUP BY, JOIN

● Various algorithms for SELECT - can pick best option at runtime

Performance Highlights:
● Up to 329x speedup over naive ORAM-based solution
● Comparable to 19x faster than prior work designed only for analytics
● Comes within 2.6x of Spark SQL (single node) for analytics
● Point query latency of 1-10ms
● Point queries 7-22x faster than prior work without trusted hardware enclaves

ObliDB: An Efficient and Secure Cloud Database using Hardware Enclaves

Trusted Hardware

Introduction

Saba Eskandarian and Matei Zaharia
Stanford

Achieving Obliviousness

System Overview

Evaluation

● Trusted hardware enclaves provide small protected memory
● Contents hidden even from attackers with full control of the OS
● Attestation: Enclave proves it is running desired code
● We implement our enclaves using Intel SGX
● Enclaves still suffer from access pattern leaks

Motivation:
● Databases are a critical component in many applications
● Significant interest in outsourcing them securely

Our Work
● ObliDB: a secure SQL database for the cloud
● Supports both transactional and analytics workloads
● Protects against access pattern leakage

Two Storage Methods:
1. Linear Storage: access every block for every access - used

for analytics
2. Oblivious Indexes: used for point queries and analytics on

frequently updated tables

Threat Model
Powers of Adversary:
● Full control of OS
● Examine and modify unprotected memory
● Monitor network and data transfer in/out of enclave

Assumption:
Portion of enclave protected from side-channel attacks, does not
leak access patterns inside protected memory

Secrets

Enclave

Enclave

Table 1
Index

Table 2
Linear

Table 3
Both

Unprotected RAM or Disk

Metadata
Oblivious
Operators

Optimizer
Integrity
Checks

Protected
Memory

Server

Client
...

Comparison to Baseline

Query Type Speedup

Range Selection
(Linear)

29.2x

Group By Aggregate
(Linear)

185x

Range Selection
(Index)

1.4x

Point Selection
(Index)

1.5x

Insert (Index) 64x

Delete (Index) 15x

Comparison to a baseline database
using a naive data structures and
operators with ORAM

Optimizer picks the best
option of our 4 oblivious
SELECT algorithms
(named Hash, Small,
Large, and Continuous)
based on the results of a
fast first pass over data.

Point queries faster than
typical network latencies

Leakage Attacks

Point Read: O(N)
Large Read: O(N)
Insertion: O(1)
Deletion: O(N)

Point Read: O(log2N)
Large Read: O(N)
Insertion: O(log2N)
Deletion: O(log2N)

Leakage attacks observe access patterns to encrypted memory
Problem: this leakage completely compromises security
Solution: design enclave operation to be oblivious of input data

Access 1, 2 Access 4, 5 Access 1, 2

Decouple mem.
accesses from
sensitive data

Access 4, 5

 Linear Storage Oblivious Indexes

Secure Channel

The most efficient low power MAC protocol isn’t useful if
it can’t be used. C processes in Tock have long been able
to communicate directly with other devices in a WLAN
using the built-in 15.4 radio driver, but a connection to the
Internet from a board running Tock is impossible. Our
current work aims to bring familiar socket-based IP
networking to Tock applications.

Challenges
• Tock has no file system! Sockets aren’t tied to a file

descriptor, so the kernel must track registered sockets
differently.

• Memory must scale with the number of processes
holding socket handles. The kernel must store handle-
specific information in individual application grants.

• Network stack sends one IPv6 packet at a time.

• Filtering received packets must occur at the driver and
must consider the future addition of access control and
security policies.

Current API
int udp_socket (sock_handle_t *h, sock_addr_t *a);
int udp_close (sock_handle_t *h);

ssize_t udp_send_to (sock_handle_t *h, void *buf, size_t len,
sock_addr_t *dest);

ssize_t udp_recv_from (sock_handle_t *h, void *buf, ssize_t len,
sock_addr_t *from);

X-MAC is implemented as a Rust capsule and directly
controls an 802.15.4 radio. The protocol is tested with an
RF233 radio on an Imix board, and can support any
hardware device implementing the Tock Radio HIL.

Observations
• Must retain full control of radio power management

and have some knowledge of radio sleep behavior.
• Designing for the future: general purpose MAC

protocol interface.

• Nodes incur significant tradeoff: additional latency.

Power Consumption Behavior

Enabling Safe, Low Power Networking
Jean-Luc Watson, Paul Crews, Conor McAvity, Hudson Ayers

Professor Philip Levis, Secure IoT Retreat 2018

Motivation
Embedded devices in an Internet of things require
connectivity as a basic resource, yet network access poses
significant security risks. Tock, an embedded operating
system written in the Rust programming language, can
help address these issues. A network stack written as a
Tock capsule is memory- and type-safe: a faulty execution
that can access memory it was not explicitly granted must
have first subverted the Rust type system.

Building on prior work in the IP/6LoWPAN layers, we
focus on 2 specific objectives:

• Energy efficiency, in that the power consumption of
radio communication significantly impacts longevity.

• Straightforward application networking, which
enables IP communication for multiple untrusted
processes on the same platform.

Implementation UDP in User space

X-MAC
X-MAC is a duty-cycling MAC protocol designed for a
radio link layer, proposed by Buettner et al. A transmitter
sends a sequence of extremely small “preamble” packets,
and each node wakes periodically to listen for incoming
traffic. Once the receiver has indicated it is awake, the
transmitter will send the desired data.

Wake

TX

Preamble Preamble Preamble

RX

ACK Data

Sleep

X-MAC Sender: current readings while sending a successfully ACK’d preamble, followed
by data packet transmission. Scale on both axes is consistent between each figure.

Non-sleeping Sender: no preamble transmission necessary, but requires
constant radio activity to listen for incoming packets.

Preamble
ACK

Data TX
ACK

X-MAC Receiver: preamble packet detected during wake period – ACK
and wait to receive data packet.

Incoming Preamble
Received ACK Data Received ACK

1. Capability Spectrum: A protocol should support a spectrum of device capabilities. This spectrum defines a clear ordering
via which especially resource constrained devices can reduce code size or RAM use by eliding features. Such a spectrum
makes a protocol usable by extremely low resource devices without forcing more resourceful devices to communicate
inefficiently.

2. Capability Negotiation: There should be an explicit mechanism by which two devices can efficiently negotiate what level to
use when they communicate If two devices wish to communicate, they default to the lower of their supported capability
levels.

3. Provide Reasonable Bounds: Specifications should specify reasonable bounds on recursive or variable features so
implementations can bound RAM use. This allows implementations to safely limit their RAM use without silent
interoperability failures.

4. Don’t Break Layering: Energy-saving optimizations should not make assumptions about the rest of the stack despite the
appeal of cross-layer optimization in embedded systems. Long-lived IoT systems will evolve and change, and systems use
and draw on existing operating systems as well as libraries. Enforcing layering ensures developers need not own and
customize the entire software stack.

Design Considerations for Low-Power Internet Protocols
Hudson Ayers

Professor Philip Levis, SITP Retreat 2018

Abstract

Related Work
- 6LoWPAN specification (RFC 4944, RFC 6282, RFC 6775)
- Tock OS 6LoWPAN Stack
- Contiki OS, Riot OS, TinyOS, OpenThread, ARM 6LoWPAN stacks

IoT Platform Resources
The 6LoWPAN Internet Standard opens sensor networks up to Internet connectivity by
specifying how to format IPv6 packets over low-power wireless links such as 802.15.4.
Examining 6LoWPAN implementations in major embedded and sensor networking
operating system, however, we observe that they do not fully interoperate. I.e., for any
pair of implementations, one implementation sends 6lowpan packets which the other
fails to process and receive.

We explore why these different implementations do not interoperate and find it is due to
some of the basic design goals of 6LoWPAN. Based on these findings, we propose four
principles that can be used to structure protocols for low power devices that encourage
interoperability between diverse implementations. These principles are based around the
importance of balancing memory usage and radio efficiency, and the importance of not
relying on Postel's law when dealing with low resource devices. We evaluate and
demonstrate these principles by using them to suggest changes to 6LoWPAN that would
make it easier for implementations to interoperate.

6LoWPAN Interoperability Study

Design Principles

▪ 6LoWPAN RFCs define many “features” which 6LoWPAN devices must support.
▪ Inspecting several open source 6LoWPAN implementations, we discovered

mismatched/incomplete support for these features.

▪ Techniques such as advanced MAC and physical layers, and tracking network state can reduce packet overhead and,
thus, radio energy consumption.

▪ These techniques require larger and more complex implementations.
▪ Too much emphasis on saving radio energy through complex techniques → force requirement for more expensive,

power hungry microcontrollers.
▪ Different applications and platforms will be better served by different positions of this “slider”
▪ Specifications should not force any particular balance between code size and radio energy.
▪ The table below reveals that much of the complexity of 6LoWPAN is associated with complex compression

techniques used to reduce radio energy

IoT Platform Program Memory (kB) RAM (kB)
Tmote Sky 48 10
Zolertia Z1 92 8
Atmel RZRaven 128 8
TI CC2650 128 28
SAMR21 Xpro 256 32
Nordic nRF52 DK 512 64
Arduino Due 512 96
Nest Protect* 750+ 100

➢ Internet of Things space is composed of devices
with varied capabilities.

➢ Code size and RAM can vary by an order of
magnitude

➢ Application code size and RAM requirements vary
as well

Code Size / Radio Energy Tradeoff

WiFröst helps users locate the causes of unexpected
application behavior by detecting and flagging
unexpected behaviors from the trace logs and offering
concrete tips on how to fix these behaviors. The
checks have access to all of the information collected
by the system including a user’s code execution, the
communication health, and network activity.

Bridging the Information Gap for Debugging IoT
Embedded Systems

Will McGrath, Jeremy Warner, Björn Hartmann, et al.

The rise in prevalence of IoT technologies has
encouraged more people to prototype and build
custom internet connected devices based on low
power microcontrollers. While well-developed tools
exist for debugging network communication for
desktop and web applications, it can be difficult for
developers of networked embedded systems to figure
out why their network code is failing due to the limited
output affordances of embedded devices. WiFröst is a
tool for debugging these systems using
instrumentation that spans from the device itself, to its
communication API, to the wireless router and back-
end server. WiFröst automatically collects this data,
displays it in a web-based visualization, and highlights
likely issues with an extensible suite of checks based
on analysis of recorded execution traces.

We believe that providing the information relevant to
understand the behavior of a networked embedded
system in a single linked environment can allow users
to debug more efficiently through holistic methods
(e.g. pattern recognition) and also help preemptively
identify problem areas in system behavior across
domain boundaries. WiFröst combines information
from different domains (from code to network packets
and server events) in a joint visualization that allows
users to traverse domain boundaries as they seek to
understand problems. A key insight is that
instrumentation of the network gateway device
provides a good deal of both control flow information
as well as specific error information (e.g. through
remote API call returns).

We instrument the code of a microcontroller under
test with an ANTLR parser and configure a Rapberry
Pi linux computer as a software router that logs
communications with mitmproxy. Data from the device
and router are captured with an off-the-shelf logic
analyzer. We also optionally run an open-source IoT
backend that we have modified to log and transmit
API accesses. We aggregate these streams in a local
database and display them in a visualization.

Figure 4: WiFröst's compilation and instrumentation process.

Figure 1: An overview of WiFröst's UI: an integrated code editor, serial console, and application
network trace visualization that includes the device's program and communication activity.

Figure 2: An overview of the hardware components of WiFröst’s architecture.

WiFröst
 Checks Introduction

 Motivation

 System Overview

 WiFröst GUI

Console

Event
Information

Network
Connections

Application
Health Bars

Check
Results

User Code

User Code
Function

Stack

ServerRouterDevice

Logic Analyzer Capture PC

DBWiFröst UI

(Mitmproxy)

User Code WiFröst UI

Figure 3: WiFröst's currently supported checks and where
they collect their information.

WiFröst focuses on the common pattern of IoT devices
communicating with HTTP(S) REST interfaces. WiFröst
provides a unified visualization and exploration
environment for measurements taken through
instrumentation of IoT stacks (device, router, server),
so that users can localize errors and identify failure
modes based on pattern recognition and situational
context across levels of application and communication
infrastructure. WiFröst preemptively checks for
common errors and as provides in-situ explanations for
error types at different levels (e.g., WiFi connection
errors, HTTP error codes, API usage errors) in order to
decrease the knowledge required for both localizing
and interpreting bugs.

EMBEDDED SYSTEMS RESEARCH
UNIVERSITY OF CALIFORNIA, BERKELEY
lab11.eecs.berkeley.edu

WEB BLUETOOTH is a new W3 standard & JavaScript API [3], enabling connection
with BLE devices from websites, implemented in Chrome on Android & desktop.

The current spec requires users to have prior knowledge of the device and its
associated website prior to manually navigating to that particular site.

Once the page is open, the user chooses the appropriate device to connect to the
page from a list of nearby peripherals, emulating legacy Bluetooth pairing.

As more low power sensors and actuators are deployed, the need for an
affordable and ubiquitous gateway solution grows more pressing.

New cheap and efficient components present promising possibilities in
creating hardware infrastructure that connect such devices to the Internet
while maintaining a miniscule footprint in terms of physical space and energy.

In particular, we look at the ESP32, a $4 microcontroller component from
Espressif with integrated Wi-Fi and Bluetooth Low Energy (BLE) radios [1].

The provided software environment and drivers for the ESP32 are based on
FreeRTOS, and contains built-in libraries for BLE and Wi-Fi.

VULNERABILITIES WITH WEB BLUETOOTH

This model places the burden of accuracy & authentication on users, disrupts
discovery & interaction, and exposes risks from malicious or careless actors:

● may spoof pages for real devices, tricking users into
pairing with them. Careless pages may allow unknown devices to connect.

● may purposefully initiate an inappropriate pairing of device
and webpage, or careless and uninformed users may do so accidentally.

● can simply use the same name or service ID as a real
device and easily trick users into pairing it with legitimate webpages.

The current model is too restrictive for usability, and too permissive for security.

INTEGRATING WITH DISCOVERY SERVICES

The usage model can improve by allowing more casual discovery of devices &
interfaces. This can be enabled with a service like PHYSICAL WEB [4] —
devices broadcast a link that points the browser to a Web Bluetooth webpage.

However, Physical Web obfuscates device information, and the user must
guess the appropriate device to connect to the page based on device name.

THE DEVICE AS A WEB RESOURCE

To further improve both seamlessness and safety, we can treat the Bluetooth
devices as resources of the websites themselves, by allowing them to declare
the sites to which they belong or from which they can be accessed.

We have previously introduced a browser, Summon, which employs a form of
this strategy to enable seamless discovery & interaction [5].

In this model, the devices broadcast their website’s location for discovery, and
the browser transparently lists devices with links to their websites.

When opened, the page automatically obtains rights to access only the
devices that have declared their association to the site.

BLUETOOTH PACKET RECEPTION

To test the ESP32’s ability to receiving BLE data, we ran a
series of 10-min scans in an isolated environment, with no
external BLE interference.

We compared with results of a $1000 professional Teledyne
BPA scanner.

With devices sending a unique packets every 100ms, the
ESP32 achieved packet reception rates of:

● ~93% PRR with 1 advertising devices (vs ~94% on BPA)
● ~88% PRR with 10 advertising devices (vs ~91% on BPA)
● ~67% PRR with 50 advertising devices (vs ~72% on BPA)

POWER CONSUMPTION

To test power consumption, we created a simple Gateway
application that performs a BLE scan and sends raw data via
HTTP request over Wi-Fi. Power was recorded in each state:

● No Wi-Fi/Bluetooth: ~.19W
● BLE scanning: ~.54W
● Data send over Wi-Fi (while BLE off): ~.44W
● Data send over Wi-Fi (while BLE scan on): ~.6W

These preliminary results indicate that the BLE performance of the ESP32 is comparable to
professional BLE scanning equipment, & proves promising as a major gateway component.

Initial experience with the ESP32 is encouraging & we plan to test it for large scale deployments.

Our applications for the ESP32 are available on GitHub [2].

Pantheon: the training ground for Internet congestion-control research
https://pantheon.stanford.edu

Francis Y. Yan
†
, Jestin Ma

†
, Greg D. Hill

†
, Deepti Raghavan

¶
, Riad S. Wahby

†
, Philip Levis

†
, Keith Winstein

†

†
Stanford University,

¶
Massachusetts Institute of Technology

Introduction

• congestion control is a cornerstone problem
• no community benchmarks
• inconsistent behaviors of congestion-control algorithms

Be
tte
r

Figure 1: Many algorithms perform di�erently from how they were intended and documented.
Colombia to AWS Brazil (cellular, 1 flow, 3 trials, P1391).

Pantheon: a benchmark platform for congestion control

• a software library containing 15+ congestion-control algorithms
• a diverse testbed in 10+ countries on wireless and wired networks
• a collection of calibrated emulators and pathological emulated networks
• a continuous-testing system
• a public archive of searchable results at https://pantheon.stanford.edu

Figure 2: Pantheon’s measurement nodes (green pins: wired and cellular; blue pins: wired only).

Measurement study:
• performance of congestion-control algorithms is highly variable across the type

of network path, bottleneck network and time
• no single existing algorithm performs well in all settings

Calibrated emulators

• simulation or emulation: reproducible and allows raplid experimentation
• traditional view: the more fine-grained and detailed, the better
• open problem: how to choose parameter values to faithfully emulate a network

New figure of merit: replication error
Average di�erence of the performance of a set of transport algorithms run over
the emulator compared with over the target real network path.

Approach:
• collect a set of results over a particular network path on Pantheon
• run Bayesian optimization to minimize replication error
• parameter space: link rate, propagation delay, sender’s queue size, loss rate,

constant or Poisson-governed rate
Evaluation:

Path Replication error (%)
Nepal to AWS India (Wi-Fi, 1 flow, P188) 19.1
AWS Brazil to Colombia (cellular, 1 flow, P339) 13.0
Mexico to AWS California (cellular, 1 flow, P196) 25.1
AWS Korea to China (wired, 1 flow, P361) 17.7
India to AWS India (wired, 1 flow, P251) 15.6
AWS California to Mexico (wired, 1 flow, P353) 12.7
AWS California to Mexico (wired, 3 flows, P1237) 14.4

Figure 3: Replication error of calibrated emulators on real-world paths. 16.8% on average.

Be
tte
r

Figure 4: Calibrated emulators are able to match the performance of transport algorithms.
AWS California to Mexico (wired, 3 flows, 10 trials, P1237). Mean replication error: 14.4%.

Pantheon use cases
• Vivace (NSDI 2018): contributed 3 variants to Pantheon
• Copa (NSDI 2018): deployed a series of 6 prototypes and used Pantheon’s

measurements to inform each iteration
• Indigo: a new congestion-control design trained on Pantheon’s data

Indigo: a machine-learned congestion control

• learns to map from states to actions using a recurrent neural network
• state: congestion window size, previous action, and exponentially-weighted

moving average (EWMA) of queueing delay, sending rate, and receiving rate
• action: adjustment to congestion window (÷2, ≠10, +0, +10, ◊2)
• imitation learning: imitates actions labelled by a congestion-control oracle
• congestion-control oracle: outputs the action that brings the current

congestion window closest to the ideal size — around bandwidth-delay product
(BDP) in emulators

Global LSTM
Network

Worker 2 Worker NLocal LSTM
Network

Sender

Receiver
Network
oracle

 1. sync local
parameters

2. start
flow

3.c get action1

3.b get
expert action1

4. enqueue
data, finish iteration

1repeat step 3
every 10ms

3.a get state1

5.

5.

Figure 5: Schematic of Indigo’s distributed training system.

Be
tte
r

Figure 6: Indigo’s performance is at the throughput/delay tradeo� frontier.
AWS Brazil to Colombia (wired, 1 flow, 10 trials, P1439).

Conclusion
Pantheon has assisted in the development of two recently-published congestion-
control algorithms, and has supported our own data-driven approach to protocol
design. Motivated by the success of ImageNet in the computer-vision community,
we believe Pantheon will enable faster innovation and more reproducible research.

https://pantheon.stanford.edu
https://pantheon.stanford.edu/result/1391/
https://pantheon.stanford.edu
https://pantheon.stanford.edu/result/188/
https://pantheon.stanford.edu/result/339/
https://pantheon.stanford.edu/result/196/
https://pantheon.stanford.edu/result/361/
https://pantheon.stanford.edu/result/251/
https://pantheon.stanford.edu/result/353/
https://pantheon.stanford.edu/result/1237/
https://pantheon.stanford.edu/result/1237/
https://pantheon.stanford.edu/result/1439/

Holly	Chiang,	Daniel	Giffin,	Amit	Levy,	Philip	Levis	

Power	clocks:	Dynamic	Multi-Clock	Management	for	Embedded	Systems		

Computer	Science	Department	
353	Serra	Mall	

Stanford	University	
Stanford,	CA	94305-9025,	USA	

Stanford	Information	Networks	Group	(SING)	

Introduction	
	Modern	microcontrollers	can	be	reconfigured	on	the	fly	with	different	
clock	sources	and	 frequencies,	and	these	may	differ	 radically	 in	 their	
power	 consumption.	 For	 applications	 whose	 workloads	 change	 over	
time,	dynamic	management	of	clocks	 is	critical	 to	conserving	energy.	
While	 this	 task	 can	 be	 integrated	 into	 application	 logic,	 the	 varying	
constraints	 of	 each	 embedded	 hardware	 environment	 together	with	
the	 complex	 interactions	 of	multi-application	 systems	 can	make	 this	
approach	unacceptably	burdensome.	Power	Clocks	orchestrates	clock	
management	 in	 the	 kernel	 to	 optimize	 energy	 consumption,	 thus	
obviating	 the	 need	 for	 application	 involvement	 and	 still	 achieving	
acceptable	performance	for	typical	workloads.	 In	our	example	sensor	
application,	 Power	 Clocks	 is	 able	 to	 demonstrate	 up	 to	 15.2%	 in	
energy	savings	over	a	statically	chosen	energy-optimizing	clock	and	up	
to	in	31.2%	energy	savings	over	a	static	general	purpose	clock.	

&ORFN
&OLHQW

&ORFN
0DQDJHU

FORFNBFKDQJH

&ORFN
&OLHQW

JHWBSDUDPV JHWBSDUDPV

SDUDPV SDUDPV

FORFNBXSGDWHG FORFNBXSGDWHG

ORFN

XQORFN

SHULSKHUDO�
RSHUDWLRQ

QHHGBFKDQJH

UHJLVWHU UHJLVWHU

���

D

E

F

G

H

D

E

F

G

H

I

J

K

L

Label	 Mode	 Clock	 Description	
a	 wait	 RC32K	 The	processor	is	in	deep	sleep	

b	 run	 RCFAST	 The	processor	wakes	up,	the	ADC	
requests	a	clock	change	

c	 sleep	 RCFAST	 The	processor	goes	to	sleep	

d	 run	 RCFAST	 The	ADC’s	DMA	transfer	completes,	ADC	
samples	are	converted,	flash	is	written	

e	 wait	 RC32K	 The	processor	goes	to	deep	sleep	

Label	 Mode	 Clock	 Description	
a	 wait	 RC32K	 The	processor	is	in	deep	sleep	
b	 run	 DFLL	 The	processor	wakes	up	
c	 run	 RCFAST	 The	ADC	starts	sampling	with	DMA	transfer	
d	 sleep	 RCFAST	 The	processor	goes	to	sleep	
e	 run	 RCFAST	 The	ADC’s	DMA	transfer	completes	
f	 run	 DFLL	 ADC	samples	are	converted	
g	 run	 RCSYS	 The	flash	is	written	
h	 run	 DFLL	 The	processor	switches	to	its	default	clock	
i	 wait	 RC32K	 The	processor	goes	to	deep	sleep	

ADC	
sample	
rate	

Static		
DFLL		
(μJ)	

Static	
RCFAST	
(μJ)	

Hand	
Code	(μJ)	

Power	
Clocks		
(μJ)	

125	ksps	 719.4	 574.2	 491.7	 528.0	

250	ksps	 907.5	 739.2	 633.6	 650.1	

300ksps	 973.5	 801.9	 693.0	 679.8	

Clock	 Frequency	 Current	 Startup	
RCSYS	 113600	Hz	 12	μA	 38	μs	

RC1M	 1	MHz	 35	μA	 -	

RCFAST	 4.3/8.2/12	MHz	 90/130/180	μA	 0.31	μs	

OSC0	 16	MHz	 -	 -	

RC80M	 80	MHz	 300	μA	 1.72	μs	

PLL	 48-240	MHz	 120-500	μA	 30	μs	

DFLL	 20-150	MHz	 122-1919	μA	 100	μs	

System	Design	
What	information	is	needed	to	change	the	clock?	
Modern	microcontrollers	can	have	dozens	of	peripherals,	so	requiring	
the	controller	to	keep	track	of	the	state	of	each	can	be	too	resource-
intensive.	 Instead,	 it	makes	more	 sense	 for	 each	 peripheral	 to	 keep	
track	 of	 its	 own	 state	 and	 notify	 the	manager	 when	 changes	 occur.	
Rather	than	having	the	controller	 figure	out	what	clocks	can	be	used	
for	a	given	peripheral	state,	each	peripheral	can	directly	report	a	list	of	
clocks	compatible	with	its	current	state.	
When	can	the	clock	be	changed?	
Although	 immediately	 servicing	 a	 clock	 change	 request	 would	 allow	
better	 real-time	 guarantees,	 correctness	 requires	 that	 some	
peripheral	 operations	 be	 allowed	 to	 complete	 first.	 In	 order	 to	
determine	when	such	operations	are	 in	progress,	 the	manager	could	
periodically	scan	peripheral	devices.	But	this	can	be	expensive	if	there	
are	many	peripherals,	and	the	scan	has	to	be	repeated	multiple	times.	
It	is	more	efficient	for	peripherals	to	report	to	the	manager	when	their	
clock-sensitive	operations	begin	and	end.	Another	 issue	is	preventing	
blocking	 caused	 by	 new	 peripheral	 operations	 starting	 while	 the	
system	is	waiting	for	a	clock	change	to	occur.	Both	of	these	goals	can	
be	solved	by	using	a	locking	mechanism.	
	
	

Implementation	
ClockManager	 and	 ClockClient	 are	 Rust	 traits.	 The	 central	 clock	
controller	 implements	 ClockManager.	 Every	 peripheral	 that	 has	 clock	
dependent	operations	implements	ClockClient.	
During	 initialization,	 each	 peripheral	 calls	 register,	 allowing	 the	
ClockManager	to	store	a	reference	to	itself.		
Before	 beginning	 a	 operation	 that	 needs	 the	 clock,	 a	 peripheral	 calls	
need_change	 to	 check	 if	 the	 current	 clock	 is	 compatible	 with	 the	 its	
clock	 requirements.	 If	 the	 current	 clock	 is	 not	 compatible	 with	 the	
peripheral’s	 needs,	 the	 peripheral	 calls	 clock_change	 to	 request	 a	
change	 in	 clock.	 To	 choose	 a	 clock	 that	meets	 the	 requirements	of	 all	
peripherals,	 the	 ClockManager	 queries	 all	 registered	 peripherals	 for	
their	clock	requirements	by	calling	get_params.	The	ClockManager	then	
chooses	 the	 lowest	 power	 clock	 that	 meets	 all	 requirements	 and	
informs	 each	 registered	 ClockClient	 that	 the	 system	 clock	 has	 been	
changed	by	calling	the	clock_updated	function	on	each	ClockClient.	
If	 a	ClockClient	has	a	 clock	dependent	operation,	 it	 calls	 lock	before	 it	
begins	 its	 operation.	 Calling	 lock	 prevents	 the	 ClockManager	 from	
changing	 the	 clock	 while	 the	 peripheral’s	 operation	 is	 ongoing.	 lock		
returns	a	boolean	 indicating	whether	or	not	 the	peripheral	obtained	a	
lock.	 It	will	always	return	true	unless	a	clock	change	is	pending,	during	
which	 locking	 is	prevented.	Once	a	peripheral’s	operation	 finishes,	 the	
peripheral	calls	unlock	 .	 If	 the	unlock	causes	 the	 lock	count	 to	drop	to	
zero,	a	clock_change	is	triggered.	

R. Lin, R. Ramesh, A. Iannopollo, A. Sangiovanni-Vincentelli, P. Dutta, B. Hartmann work in progress

Examining PCB Design Practices
setting the foundation for better board design tools

For further information, contact:
richard.lin@berkeley.edu

rkr@berkeley.edu

LED
blue, indicator

Button
Micro-

controller

LED
color

green
blue

brightness
indicator

Power
3.3 V, 1 A

red

circuit

auto choose

led-resistor

led-boost
for illumination
$5.21, 5 parts

basic circuit
$0.15, 2 parts

DigitalLink
voltage = 0 ... 3.3 V
threshold = 0 V, 3.3 V
current = 10 mA

Concepts for New Tools
Significant oppurtunity for improved schematic entry

Goals
• Reduce schematic design time by:
 • Allow higher-level design input, design space exploration
 • Encourage re-use of circuit blocks
 • Better automated checks, reduce manual verification effort

Underlying Data Model
• Block diagram model is widespread but powerful
 • Support building reusable generators with parameterization
 examples: LED color, operating voltage, maximum ratings
 • Type system on blocks and ports, allowing auto refinement

◀ Block Diagram GUI
• Users reluctant to use new tools
 must provide familiar interfaces
• Hierarchical design abstraction
 allowing underconstrained design

class IndicatorLed(SubcircuitPart):
 def __init__(s, color=None):
 io = s.Port(DigitalSink())
 led = DiscreteLed(
 color=color, i=10*mA)
 res = DiscreteRes(res=
 (io.pos.v-led.vf-io.neg.v)/10mA)

 io.pos << led.pos
 led.neg << res.a
 res.b << io.neg

◀ Hardware Construction EDSL
• EDSLs are highly efficient for
 advanced users
• Allows building generators:
 methodologies not instances

Overall Observations
• Overall, a strategy of iterative refinement
 • Start with high-level, abstract designs
 • Refine with system diagrams, prototype iterations

High Level Design
• Functional requirements: ideas, interfaces, specifications
• If written down: generally a living, evolving document

System Architecture (Block Diagrams)
• Maps requirements down to hardware
• Mixed levels of abstraction: blocks may be generic parts
 (e.g. "microcontroller"), or may specify implementations
• Paper popular for freedom, but digital has other advantages

Prototyping
• Breadboards, protoboards, non-form-factor PCBs
• Verify design works before committing

Board Design (Schematic Capture, Place and Route)
• Schematic mostly data entry, 'creative' work done outside
• Manually copy-paste (transcribe) part datasheet circuits
• ERC sometimes used to catch limited classes of errors

Parts Selection
• Happens throughout the design process, at different levels
• Considerations: function, cost, ease-of-use

Assembly and Test
• Visual inspections for assembly defects
• Electrical bring-up: connectivity check, power-up smoke test

OVLFY3C7
Part Number Size

APG1005SYC-T
5988140107F

5mm
0402
0805

Vf
2 V
2.05 V
2 V

LED

Button
Micro-

controller

System Architecture

Physical Device
Parts Selection

Iteration

Micro-
controller

ATmega32u4
Part Number Core

LPC1549
FE310-G000

AVR
ARM CM3
RV32IMAC

+3.3v

D0
D1

GND

ATmega

...

Ideas and
Requirements

Prototype
PCB

Hand-built
Prototypes

Final
PCB

U1

SW
1

R1

J1

R2

D1

Schematic
Capture

- or -

paper, drawing software parts libraries, catalogs, spreadsheetsTools
Used

Design
Concerns user stories

functional specification
implementation exploration

verification
documentation

supporting circuitry
cost, manufacturability

system integration
cost

component availiability and sourcing

more abstract, high-level more concrete, low-level
verification

Design
Flow

breadboards EDA suites: Altium, EAGLE, KiCAD

Observed Design Flows

Background
Why do we care?
• Electronics are everywhere, e.g. for interactivity or IoT
• PCBs needed for nontrivial projects, to work with small (non-
 breadboardable) parts, or for mechanical stability

The study
• Interviewed 15 people with PCB design experience, from
 beginning novice to intermediate professional
• Asked about design flows as well as details of each step

Modern Practice
• Current design paradigm (graphical schematic capture
 followed by place and route) established in the 1980s

What's new?
• Designs are different: self-contained, easy-to-use parts
• Designers are different: lower barrier to entry (Arduino)
 enables creative and non-professional designers
• Orders of magnitude more compute: smarter tools possible

EMBEDDED SYSTEMS RESEARCH
UNIVERSITY OF CALIFORNIA, BERKELEY
lab11.eecs.berkeley.edu

Permamote:

Permamote combines energy-harvesting, a backing
non-rechargeable battery, and the newest, lowest power
components to achieve consistent operation over a
greater than 10 year lifetime when performing common
sensor mote workloads.

Neal Jackson, Joshua Adkins, and Prabal Dutta <neal.jackson, adkins, prabal>@berkeley.edu SITP - JUNE 2018

A Long-Lifetime Sensor Platform for a
Reliable Internet of Things

Low light scenario
>10 year lifetime

Medium light scenario
Exploding lifetime

Non-rechargeable Batteries
(Coin cell)

Solar Panel

Rechargeable
Battery

Permamote Power Supply
The Permamote power supply architecture consists of an LTO
battery that is recharged with a solar panel. When this battery
is depleted, it automatically switches over to a couple of
non-rechargeable coin cell batteries.
The hardware designs for Permamote are open source. This
power supply can be reused for any kind of sensor.

Permamote Features
Built from the lowest power components
currently available.
Permamote has an integrated processor
and BLE/802.15.4(Thread) radio. It includes
a variety of environmental sensors
including temperature, pressure, humidity,
accelerometer, and light intensity and color.
Additionally, an ultra low power (50nA) real
time clock allows the platform to keep
independent, accurate time

Low light scenario

Medium light scenario
100% reliability

Reliability
In addition to a long expected lifetime, Permamote is
also expected to have near perfect reliability, even
without backup non-rechargeable energy storage.

Long Lifetime
With its current storage configuration, Permamote is
expected to live “indefinitely” in normal light
conditions, and greater than a decade in darker
conditions.

Envisioned Applications
- Fine grained occupancy sensing
- Dynamic lighting, color, and shade control
- Building heating and cooling tracking

Future Work
Explore performing more general computation on devices like Permamote and
pushing down tasks like machine learning and DSP to the edge. Additionally,
consider dynamic workload adjustment based on available energy and lifetime
constraints.
Use Permamote as a testbed for autonomously localizing sensor deployments.
When deployed, sensors perform both relative and semantic localization, where
relative means discovering coordinates in 3D space in relation to other sensors,
and semantic means discovering which sensors share the same surface, desk,
wall, or room. From this we can better construct maps of spaces, as well as
automatically discover context about the deployment environment instead of
needing to write it down.

- Plant water monitoring
- Distributed glare detection
- Solar energy trace generation

https://github.com/lab11/permamote

https://github.com/lab11/permamote

